Electronic and surface properties of PbS nanoparticles exhibiting efficient multiple exciton generation.
نویسندگان
چکیده
Ultrafast transient absorption measurements have been used to study multiple exciton generation in solutions of PbS nanoparticles vigorously stirred to avoid the effects of photocharging. The threshold and slope efficiency of multiple exciton generation are found to be 2.5 ± 0.2 ×E(g) and 0.34 ± 0.08, respectively. Photoemission measurements as a function of nanoparticle size and ageing show that the position of the valence band maximum is pinned by surface effects, and that a thick layer of surface oxide is rapidly formed at the nanoparticle surfaces on exposure to air.
منابع مشابه
PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation.
We report an alternative synthesis and the first optical characterization of colloidal PbTe nanocrystals (NCs). We have synthesized spherical PbTe NCs having a size distribution as low as 7%, ranging in diameter from 2.6 to 8.3 nm, with first exciton transitions tuned from 1009 to 2054 nm. The syntheses of colloidal cubic-like PbSe and PbTe NCs using a PbO "one-pot" approach are also reported. ...
متن کاملModulating Exciton Dynamics in Composite Nanocrystals for Excitonic Solar Cells.
Quantum dots (QDs) represent one of the most promising materials for third-generation solar cells due to their potential to boost the photoconversion efficiency beyond the Shockley-Queisser limit. Composite nanocrystals can challenge the current scenario by combining broad spectral response and tailored energy levels to favor charge extraction and reduce energy and charge recombination. We synt...
متن کاملHighly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots.
We report ultra-efficient multiple exciton generation (MEG) for single photon absorption in colloidal PbSe and PbS quantum dots (QDs). We employ transient absorption spectroscopy and present measurement data acquired for both intraband as well as interband probe energies. Quantum yields of 300% indicate the creation, on average, of three excitons per absorbed photon for PbSe QDs at photon energ...
متن کاملMultiple exciton generation induced enhancement of the photoresponse of pulsed-laser-ablation synthesized single-wall-carbon-nanotube/PbS-quantum-dots nanohybrids
The pulsed laser deposition method was used to decorate appropriately single wall carbon nanotubes (SWCNTs) with PbS quantum dots (QDs), leading to the formation of a novel class of SWCNTs/PbS-QDs nanohybrids (NHs), without resorting to any ligand engineering and/or surface functionalization. The number of laser ablation pulses (NLp) was used to control the average size of the PbS-QDs and their...
متن کاملUltrafast exciton quenching by energy and electron transfer in colloidal CdSe nanosheet–Pt heterostructures† †Electronic supplementary information (ESI) available: Synthesis details, transient absorption set-ups, NS and NS–Pt spectra fitting, kinetics fitting model and parameters, details about the exciton diffusion controlled energy transfer model. See DOI: 10.1039/c4sc02994a Click here for additional data file.
Two-dimensional (2-D) semiconductor nanomaterials are receiving tremendous research interests due in part to their attractive light absorption and charge transport properties. Integration of catalytic metal nanoparticles with these 2-D semiconductors can potentially lead to new photocatalytic nanoheterostructures for efficient solar-to-fuel conversion. Here we report the synthesis and transient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 45 شماره
صفحات -
تاریخ انتشار 2011